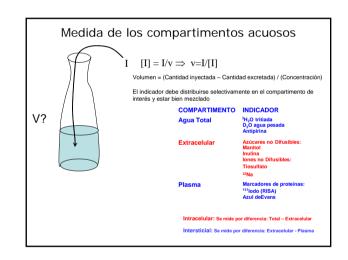

Medio Interno y Homeostasis. Compartimentos líquidos del organismo

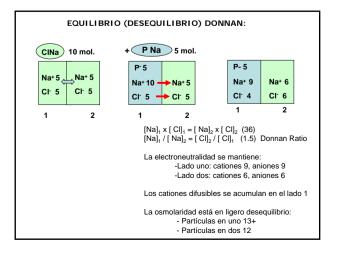
En la vida de un hombre, su época es sólo un momento; su ser, un fluir incesante; su alma, un remolino inquieto; su fortuna, oscura; su fama, dudosa. En síntesis, todo lo que es cuerpo es agua que corre, todo lo que es alma, sueños y nubes. *Marco Aurelio, 180 dC.*

Claude Bernard: el medio interno es un "mar interior" que encerraron los seres pluricelulares dentro de sí mismos.

Líquido extracelular = CINa 0,15 M (9 g./l.)

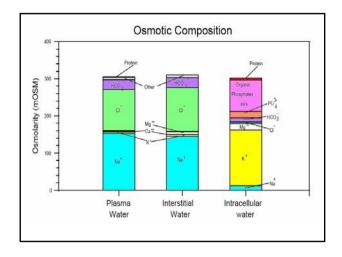

9 gramos de CINa = 1 litro de líquido extracelular

Variaciones del contenido de agua con la edad y de tejido a tejido


EDAD	%AGUA (HOMBRE)	% AGUA (MUJER)
RECIÉN NACIDO	80	75
1-5	65	65
10-16	60	60
17-39	60	50
40-59	55	47
>60	50	45

TEJIDO	% AGUA
RIÑON	83
CORAZON Y PULMON	79
MUSCULO ESQUELÉTICO	76
CEREBRO	75
PIEL	72
HIGADO	68
HUESO	22
TEJIDO ADIPOSO	10

Diferencias de composición de plasma, intersticio y líquido intracelular


	Plasma	Intersticio	Intracelular
	mEq/I	mEq/I	mEq/I
Cationes			
Na+	153	145	10
K+	4.5	4	159
Ca ²⁺	2.5	2.5	Trazas: 10 ⁻⁷ M
Mg ²⁺	1	1	40
TOTAL	161	152.5	209
Aniones			
CI-	112	117	3
CO₃H-	25	27	7
Proteínas	15	Trazas	45
Otros	9	8.5	154
TOTAL	161	152.5	209

SOLUTO	g/MOL	Eq/MOL	OSMOL/MOL
Na+	23	1	1
CI-	35,5	1	1
NaCl	58,5	2	2
Ca ²⁺	40	2	1
Cl ₂ Ca	111	4	3
Glucosa	180	0	1
Albúmina	70.000	18	1

Osmolaridad y tonicidad. Coeficiente de reflexión

Osmolaridad del plasma

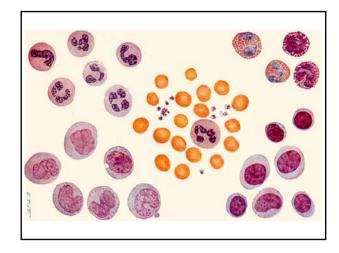
Líquidos de Reposición SOLUCIÓN: Composición (mEq/L) Sol Cristaloides S. Glucosada 5% 154 154 S. Salina 0.9% 0 0 0 308 Ringer Lactato 130 109 4 3 28 273 S. Salina 3% 513 513 0 1026 S. Salina 7.5% 1283 1283 0 2567 Reposición sales NaCl 20% (3.4M) 3400 Hipertónica KCI 1 M 1000 1000 Hipertónica 2000 Soluciones coloid Albúmina 5% 145 145 0 Hetastarch 6 % Dextrano 40-10% 154 154 0 0 300 154 154 0 0 Dextrano 70-6% 154 125 0 0

Balance hidrosalino: Necesidades basales + Pérdidas Concurrentes + Déficit previo Necesidade basales (por Kg y día): Agua: 35 ml/Kg/día (niños hasta 100 ml/Kg/día) Na: 2-4 mEq/Kg/día K: 1-2 mEq/Kg/día Ejemplo: Paciente de 70 Kg sin pérdidas concurrentes ni déficit previo: **Agua:** 70 x 35 = 2500 ml/día P. ej: Glucosado 5% a 104 ml/hora Na: 70 x 2 = 140 mEq/día: P. ej. 41 ml de NaCl al 20% (3.4 M) (8 ml/botella de 500) **K:** 70 x 1 = 70 mEq/día: P. ej. 23 ml de KCl 3 M (4 ml/botella de 500) Concentracion en mEq/I Líauido Na K CI 5 a 20 100-150 5 a 15 90-130 10 a 90 10 a 80 10 a 100 140 15 a 30 4 a 7 15 a 30

Summary of common body fluid disturbances In the table, ↓ denotes a decrease, ↑ an increase, and ↔ no chan

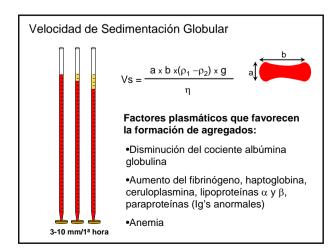
		EC Fluid		IC Fluid	
Condition	Example	Osmolality	Volume	Osmolality	Volume
Hyposmotic expansion	Excessive water intake, inappropriate ADH secretion († ADH).	+	1	↓	1
Hyposmotic contraction	Salt wasting (Loss by kidneys)	+	↓	↓	1
Isosmotic expansion	IV infusion, edema/ascites (congestive cardiac failure, hypoalbuminemia)	↔	1	↔	↔
Isosmotic contraction	Hemorrhage, burns, vomiting, diarrhoea	↔	↓	↔	↔
Hyperosmotic expansion	Drink concentrated saline	1	1	↑	↓
Hyperosmotic contraction	Severe sweating, diabetes insipidus († ADH), † insensible water loss	1	↓	↑	1

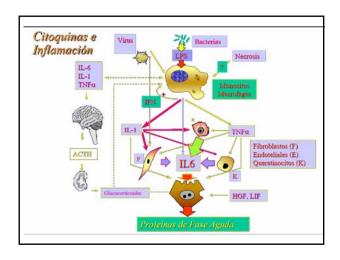
- •Osmolarity is always the same in IC and EC fluid
- $\bullet \mbox{Hyperosmolarity (hypernatremia) of EC fluid decreases the volume of IC fluid (shrinkage). } \\$
- •Hyposmolarity (hyponatremia) of EC fluid decreases the volume of IC fluid (cell edema).


Balance de redistribución de volúmenes

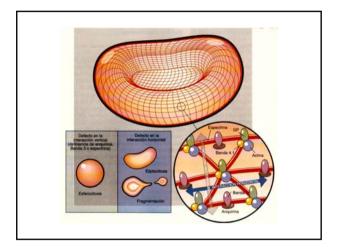
Condiciones iniciales: $VOL_{IC} = 25 L$; $VOL_{EC} = 17 L$; $[Na]_{PL} = 140 mEq/L$

Sobrecarga de 420 mEq (7 g) de CINa. Como cambiarían [Na]_{PL} VOL_{EC} y VOL_{EC}?


- 1. Calcular $Na_{TOTAL} = 140 \times (25 + 17) = 5880 \text{ mEq}$
- 2. Calcular Na_{EC} = 140 x 17 = 2380 mEq
- 3. Calcular nueva [Na]_{PL} = (5880 + 420)/(25+17) =150 (Hipernatremia)
- 4. Calcular nuevo $VOL_{EC} = (2380 + 420)/150 = 18.7 L (Aumenta <math>VOL_{EC})$
- 5. Calcular el nuevo VOL_{IC}= (25+17) 18.7 = 23.3 L (Deshidratación IC)

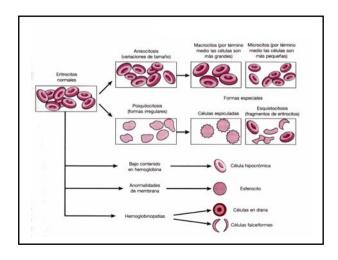

Funciones generales de la sangre. Composición y propiedades fisicoquimicas. Proteínas plasmáticas. VSG. Volemia.


GRUPO (g/l)	PROTEÍNA	FUNCIÓN
Prealbúmina (0.3) 61 KD	Proteína ligadora de Retinol	Transporte de Vitamina A
	Transtiretina	Portadora de hormonas tiroideas
Albúmina (40)	Albúmina	Principal proteína plasmática; contribuye a reducir la acumulación de agua en los tejidos; transportadora de muchas sustancias
Alfa1- globulina (3)	Alfa1-Antitripsina	Inactiva la tripsina y otras enzimas proteolíticas, reduce la lesió propia de una inflamación
	Orosomucoide	Modulador de la respuesta inmune, unión de drogas ácidas tale como la lidocaína
	Lipoproteína de alta densidad (HDL)	Transporte reverso del colesterol ("colesterol bueno")
Alfa2- globulina (5)	Alfa2-Macroglobulina	Unión a muchos enzimas, prevención de la lesión tisular
	Haptoglobina	Proteína de unión a la hemoglobina
	Ceruloplasmina	Proteína transportadora de cobre, implicada en el metabolismo normal del hierro
Beta- globulina	Transferrina	Transporte de hierro y liberación del mismo a las células
(8)	Lipoproteína de baja densidad (LDL)	Liberación de colesterol a los tejidos
	Fracción 3 del Complemento	Ayuda a regular la respuesta inflamatoria a sustancias extrañas
	IgA	Inmunoglobulina relacionada con secreciones
	Fibrinógeno	Factor de coagulación (hallado sólo en plasma, no en suero)
Gamma- globulina	IgG	Principal inmunoglobulina; inmunidad a largo plazo
(12)	IgM	Inmunoglobulina de respuesta inicial
	Proteína C reactiva	Mediador de la respuesta inflamatoria

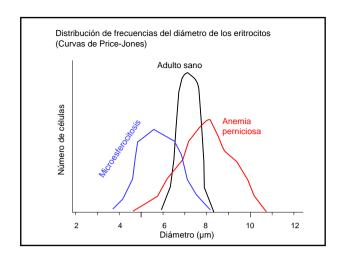


PROTEÍNAS DE FASE AGUDA:

- Proteína C reactiva
- > Fibrinógeno
- > Plasminógeno
- > Alfa1-Antitripsina
- > Alfa2-Macroglobulina
- > Haptoglobina
- Glicoproteína ácida alfa1
- ➤ C3
- Ceruloplasmina
- Proteína Amiloide Sérica A (SAA)
- Antitrombina III

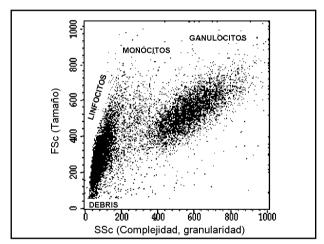


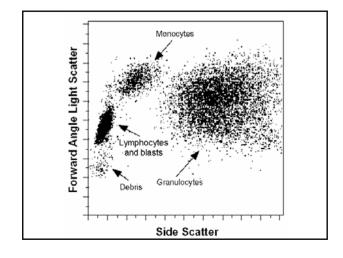
Fisiología del eritrocito: Estructura y función. Valor hematocrito. Índices eritrocitarios. Anemias. Metabolismo del hematíe y enzimopatías. Mecanismos de degradación del eritrocito. Hemólisis y anemias hemolíticas.

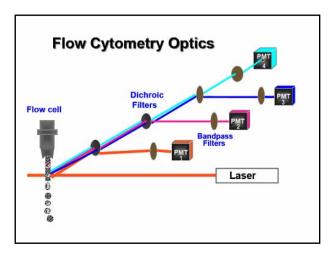

Índices hematimétricos

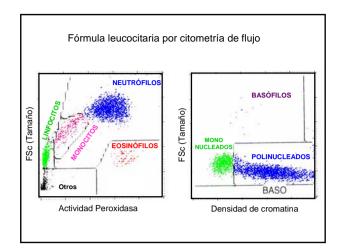

Parámetro	Unidades	Valor
Num Eritrocitos	por mm³	4-6 * 10 ⁶
Hematocrito	%	40 -50
Hemoglobina	g/dl	12 -18
VCM	fl	80 -95
HCM	pg/eritrocito	27-33
CHCM	g/dl	32-36
Num. Reticulocitos	%	0.5 - 2
Num. Leucocitos	por mm ³	4 - 10 * 10 ³
Linfocitos	%	20 -50
Monocitos	%	2-10
Neutrófilos	%	30 -70
Eosinófilos	%	1 - 5
Basófibs	%	0-2
Num. Plaquetas	%	130 -400 * 10 ³
VPM	fl	7.5 -10.5

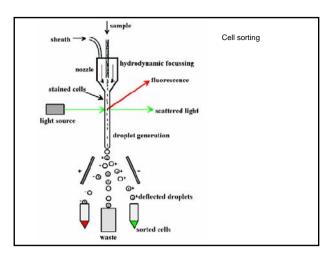


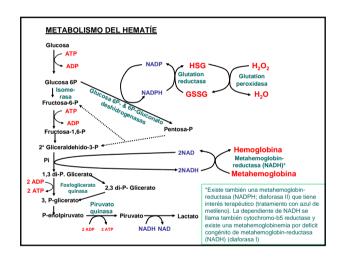

ANEMIA (Hb < 12 g%; Htc<40%)

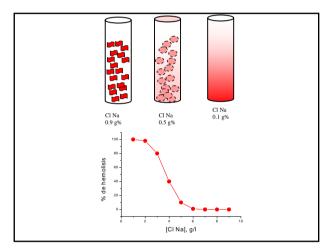

- 1) ANEMIA MICROCÍTICA HIPOCRÓMICA. VCM<80 fl; HCM<27 pg; CHCM<32 g% Ej: Anemia ferropénica; anemia sideroblastica.
- 2) ANEMIA MACROCITICA HIPERCROMICA. VCM>95 fl; HCM>33 pg; CHCM>36 g% Ej: Anemia megaloblástica (déficit de vitamina B₁₂ o ácido fólico)
- 3) ANEMIA NORMOCITICA NORMOCROMICA. VCM: 80-95; HCM: 27-33 pg
 Ej: Hemorragias recientes, anemia hemolítica, anemia aplasica

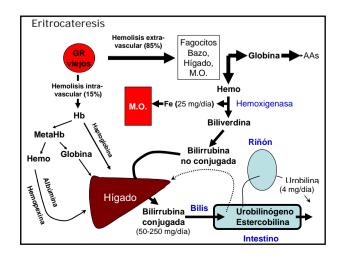


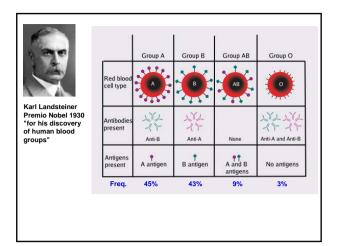


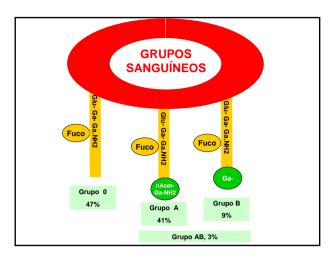


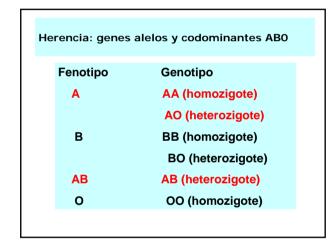


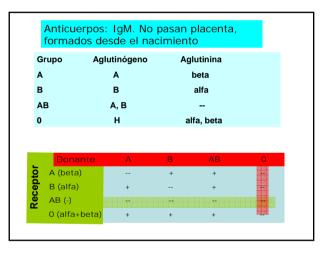


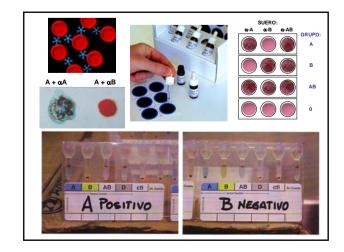


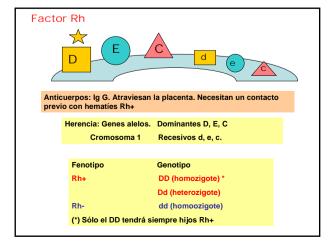


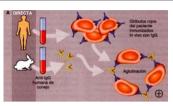


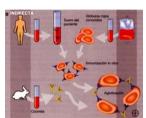





Propiedades antigénicas del hematíe. Grupos sanguíneos: sistema ABO y sistema Rh. Pruebas de determinación de grupo. Incompatibilidad sanguínea.





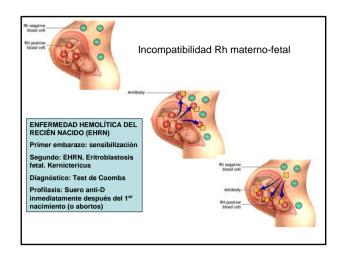


PRUEBA DE COOMBS

directe e indirecte)

Busca anticuerpos que actúen contra los glóbulos rojos (GGRR).

Directa: GGRR donante + αlaG humana


Indirecta: Suero del donante + GGRR+ αlgG humana

FINALIDAD:

Detectar [auto]anticuerpos en la superficie de GGRR (directa) o en el plasma (indirecta)

Es positiva en:

- · Anemia hemolítica autoinmunes.
- Anemias inducidas por medicamentos
- Reacciones post-transfusionales (sangre incompatible)
- · Eritroblastosis fetal.

Medicina Transfusional

- SANGRE TOTAL. 1 U = 450 ml (+65 anticoagulante). Donante único altruista. 3-6 semanas a 4 °C. Neonatos, hemorragias graves. Preferibles componentes específicos.
- CONCENTRADO DE HEMATÍES. (sedimentados de "1"). 250-300 ml. Htc 80%. 3-6 semanas a 4 °C. Para mejorar transporte de O2. Preparación para cirugía (postoperatorio). Htc<25%; Hb<8 g%.
- 3. PLASMA FRESCO CONGELADO. 1 U = 200-250 ml. 1 año a -20 °C. Descongelar a 30-37°C. Todos los factores de coagulación (incluyendo V y VIIIA). Tto. Alts. de coagulación si no se dispone del factor específico. Deficiencias globales (hepatopatias, DIC, déficit de vit. K). También para evitar trombosis por depleción de inhibidores de la coagulación.
- CRIOPRECIPITADOS. Obtenidos por recongelación lenta (1-6 °C) de "3". Precipitado blanqucino rico en VIIIC, Von Willebrand, XIII y fibronectina. Pueade conservarse 1 año a -20 oc. Hemofilia A, Enf. Von Willebrand, hipofibrinogenia.
- CONCENTRADO DE PLAQUETAS. Mezcla de varios donantes (50-70 ml con 5-6 x 10¹⁰ plaquetas) o aféresis de 1 donante (200-400 ml; 3 x 10¹¹). Trombopenia con hemorragia. Conservación: 3-5 días a 22 °C.
- CONCENTRADOS DE GRANULOCITOS. Aféresis. 10¹⁰ células. Utilizar enseguida. Neutropenias. Alternativa [preferible]: movilización con G-CSF o GM-CSF.
- CONCENTRADO DE LINFOCITOS. Similar a "6". Recostitución de elementos inmunes tras el trasplante de M.O.

PRUFBAS DE COAGULACIÓN

PRUEBAS GENERALES

Dosificación de Fibrinógeno: . 0.3 g/II Recuento de Plaquetas: 300.000 mm3

TIEMPO DE COAGULACIÓN

Tiempo que tarda una muestra de sangre en coagular en un tubo a 37°C: 10 min.

TIEMPO DE HEMORRAGIA

Tiempo que tarda en coagular la sangre del lóbulo auditivo tras lesión con lanceta: 3-5

TIEMPO DE PROTROMBINA

PPP+Tromboplastina Tisular+Ca2+

Formación redes de Fibrina: 12 seg.

Explora vía extrínseca y final comuny Factores Vit. K dependientes.

TIEMPO DE CEFALINA

PPP+ Ca²⁺ + Cefalina

Redes de Fibrina: 30 seg.

Explora Vía Intrínseca y final común, ademas de los factores antihemofílicos.

Hematopoyesis. Eritropoyesis. Regulación de la eritropoyesis. Factores de maduración del eritrocito. Metabolismo del hierro.

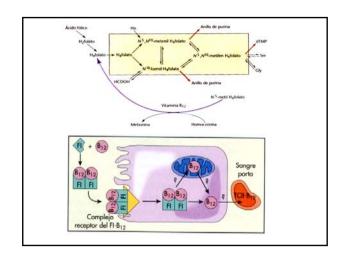
FACTORES DE MADURACIÓN

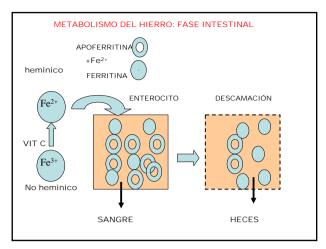
PARA LA SÍNTESIS DEL

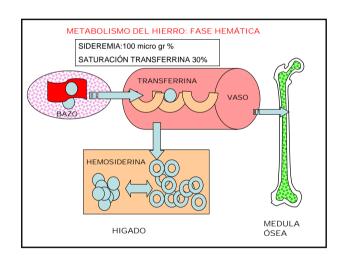
HEM:
• HIERRO

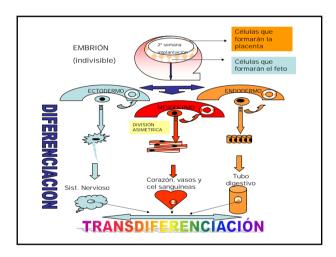
•VITAMINA B6

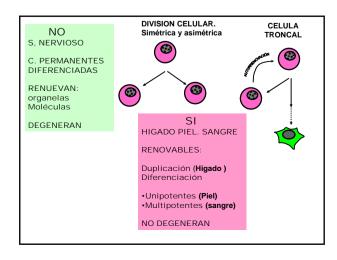
PARA LA SÍNTESIS DE GLOBINA:

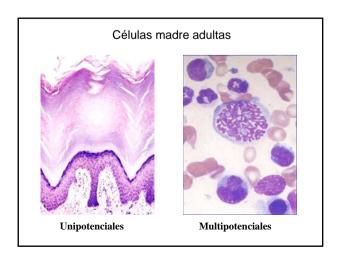

•AMINOÁCIDOS

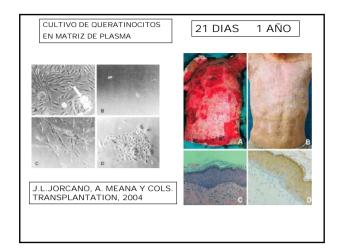

PARA LA SÍNTESIS DEL DNA

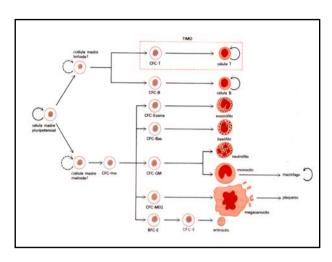

• A FÓLICO
•VITAMINA B12

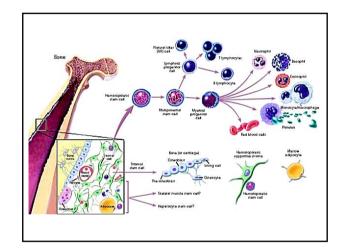

El hierro es el factor mas limitado porque el balance dietético está muy ajustado. Cuando se produce un disbalance: Anemia Ferropénica.

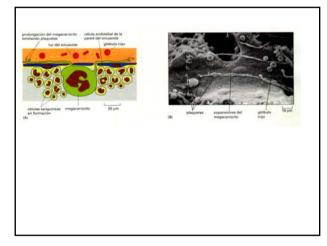

La Vitamina B 12 se almacena en el hígado. Solo disminuye cuando hay transtornos en la absorción intestinal por falta de Factor Intrinseco: Anemia Perniciosa

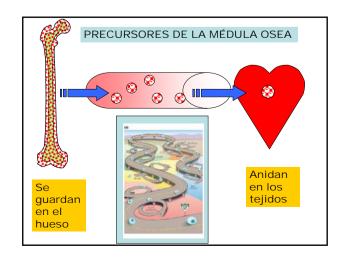


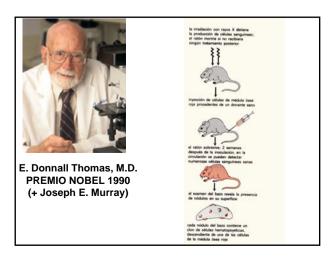


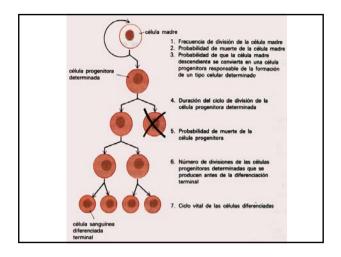


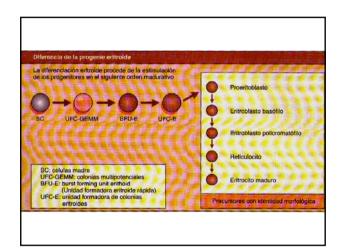


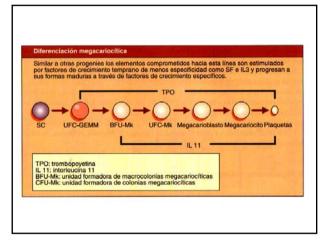


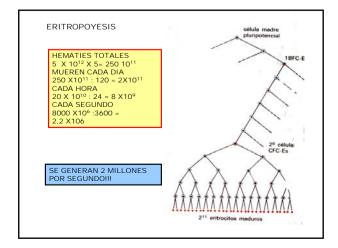






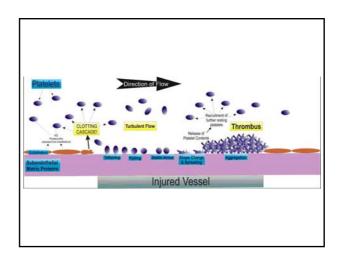


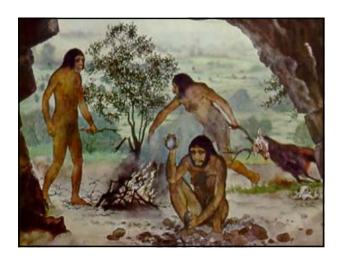




Hemostasia y coagulación. Fisiología de las plaquetas. Coagulación. Factores y vás de la coagulación. Regulación. Pruebas clínicas. Fibrinolísis.

FISIOLOGÍA DE LA HEMOSTASIA

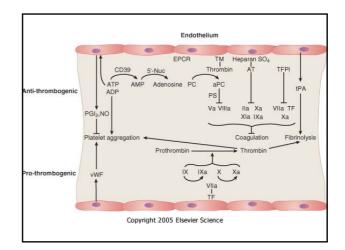

Hemostasia Primaria: Vasculoplaquetaria.

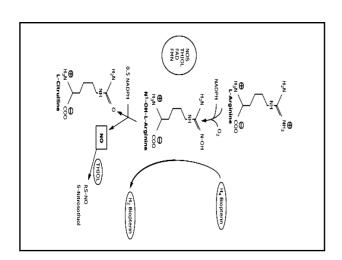

INTRODUCCIÓN

 La defensa contra la hemorragia incluye una serie de cambios bioquímicos y fisiológicos que se sitúan en cuatro grandes compartimentos.

HEMOSTASIA

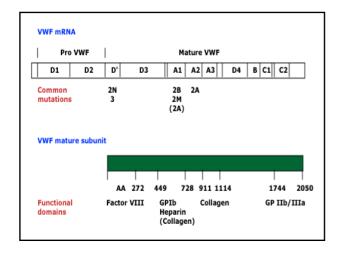
- 1. Pared vascular
- 2. Plaquetas
- 3. Coagulación
- 4. Fibrinolisis

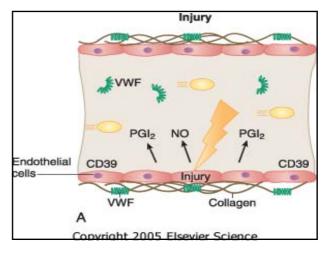



1. PARED VASCULAR

- Espasmo vascular transitorio, contracción células musculares lisas
- · Mecanismo reflejo
- Tromboxano A2 (plaquetas)
- Serotonina (plaquetas)

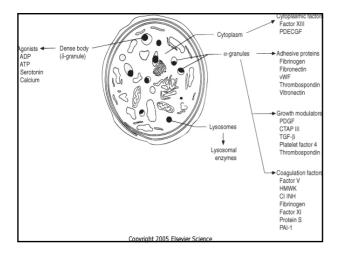
1. PARED VASCULAR ENDOTELIO

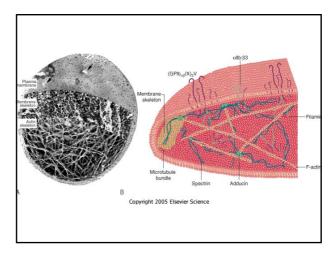

- Separación física de la sangre de tejidos subendoteliales.
- Síntesis y liberación de PGI2 y NO.
- Receptores de superficie para inhibir la coagulación (glicosaminoglicanos, trombomodulina, EPCR).
- Síntesis y liberación del activador tisular del plasminógeno (t-PA).



1.PARED VASCULAR. ENDOTELIO Factor Von Willebrand (FVW)

 La célula endotelial sintetiza y secreta FvW al plasma y a la pared vascular, los multímeros de FvW son fundamentales en la adhesión plaquetaria.


HEMOSTASIA


- 1. Pared vascular
- 2. Plaquetas
- 3. Coagulación
- 4. Fibrinolisis

G. Hayem, 1878.

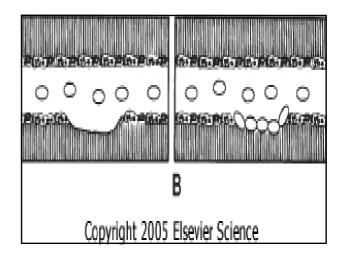
2. PLAQUETAS. GLICOPROTEINAS DE MEMBRANA

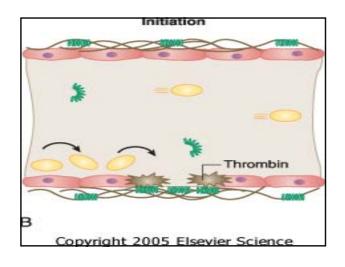
Ia-IIa Reacción con colágeno. Adhesión plaquetaria.

Ib Receptor fVW en adhesión plaquetaria.

Ic Receptor para fibronectina.

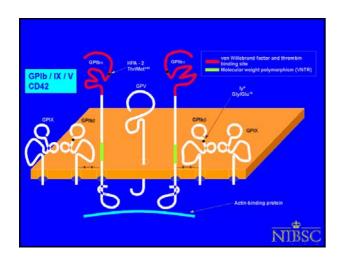
IIb-IIIa Dependiente de calcio. Une fibrinógeno y fVW.

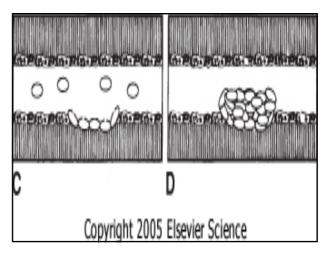

IIIb Receptor para la trombospondina. Contacto superficies


celulares.

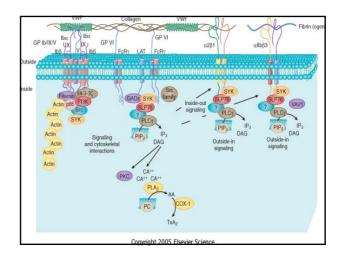
V Substrato para la trombina.

VI Receptor para el colágeno.


IX Forma parte del complejo Ib/IX.



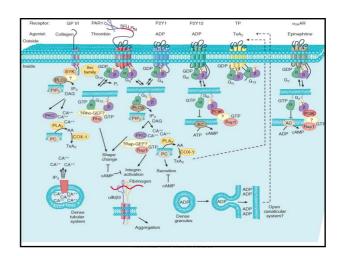
2. PLAQUETAS. ADHESIÓN


- En respuesta a la lesión de la pared vascular las plaquetas se adhieren al subendotelio.
- FvW
- Microfibrillas que contienen colágeno y/o elastina
- Receptor de membrana plaquetaria, glicoproteína lb.

2. PLAQUETAS. AGREGACIÓN

- Un agente agregante (colágeno, L-epinefrina, ADP, trombina, tromboxano A2) produce un cambio conformacional a nivel de la proteína G de la membrana, que activa la fosfolipasa C.
- Ésta trasforma el fosfatidilinositol de membrana a inositol trifosfato (IP3) y diacilglicerol.

2. PLAQUETAS. AGREGACIÓN

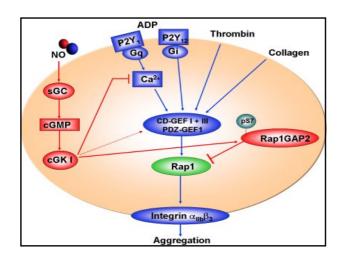

- El IP3 favorece la movilización de Ca++ intraplaquetario, activandose la proteínacinasa dependiente de Ca++-calmodulina.
- Esta proteincinasa fosforila a la cadena ligera de miosina, que se combina con actina, produce contracción plaquetaria.

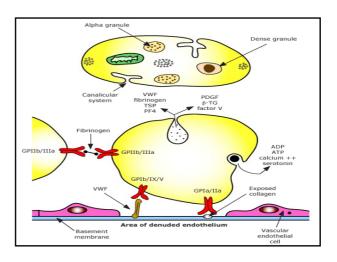
2. PLAQUETAS. AGREGACIÓN

- La activación de la fosfolipasa A2, dependiente de agonistas y de calcio, da lugar a liberación de acido araquidónico.
- Este sirve para la síntesis de tromboxano A2 (TxA2), agregante y vasoconstrictor.

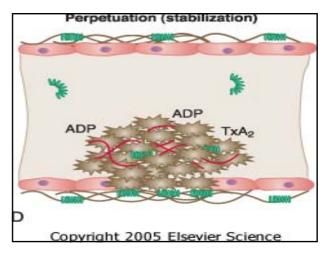
2. PLAQUETAS. AGREGACIÓN

- Tanto IP3 como TxA2 son ionóforos que movilizan el Ca++ del sistema tubular denso.
- El Ca++ se encuentra a baja concentración en el citoplasma mientras la plaqueta permanece en reposo, cuando la señal de activación se trasmite al sistema tubular denso da lugar a una liberación del Ca++.

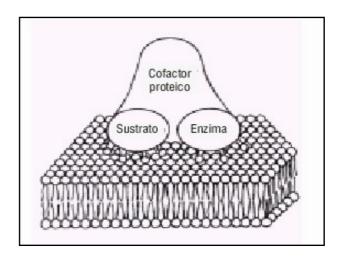


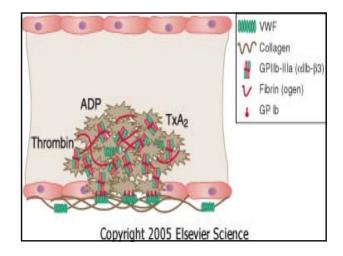

2. PLAQUETAS. AGREGACIÓN


- AMPc.
- La activación de la adenilato ciclasa da lugar a altos niveles de AMPc y a una reducción del Ca++ intracelular.


2. PLAQUETAS. AGREGACIÓN

- Los agentes agregantes tienen como objetivo establecer puentes de Fibrinógeno (Fg) entre las plaquetas.
- El complejo Ilb/Illa es el receptor plaquetario para el Fg.
- La estructura dimérica del Fg le permite tender puentes entre las plaquetas llevando a su agregación.




2. PLAQUETAS. FUNCIÓN PROCOAGULANTE

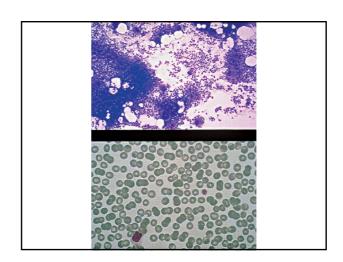
- Distribución asimétrica de los fosfolípidos de membrana plaquetaria.
- En reposo, los fosfolípidos aniónicos o procoagulantes están en la cara interna de la membrana.
- Deben expresarse en el exterior para aumentar la velocidad de las reacciones de activación de la coagulación (F X y protrombina).

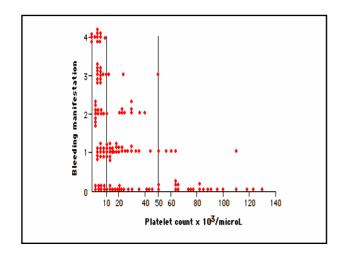
2. PLAQUETAS FUNCIÓN PROCOAGULANTE

- Las plaquetas contienen F V, expuesto en la superficie cuando sufre algún estímulo.
- Este factor puede ser activado por pequeñas cantidades de trombina.
- Además, la plaqueta contiene Fg, FvW.
- Todo contribuye a localizar la fibrina.

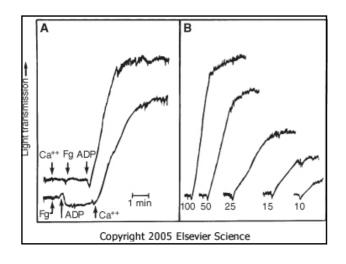
PRUEBAS DE LABORATORIO

Recuento de plaquetas


>


150.000-450.000/ul

50.000/ul, no manifestaciones hemorrágicas

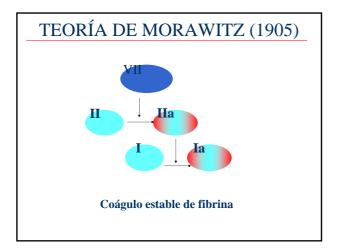

Manual Automático

Pseudotrombocitopenia

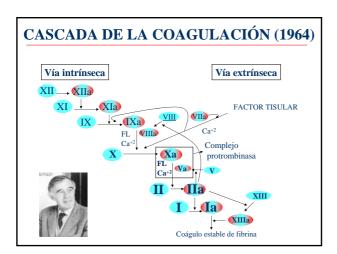
FISIOLOGÍA DE LA HEMOSTASIA

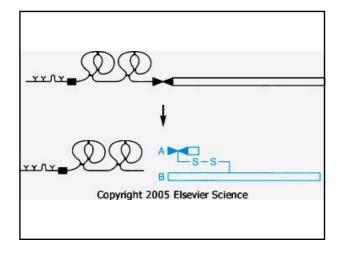
<u>Hemostasia Secundaria</u> <u>Eje Coagulación/Fibrinolisis</u>

HEMOSTASIA

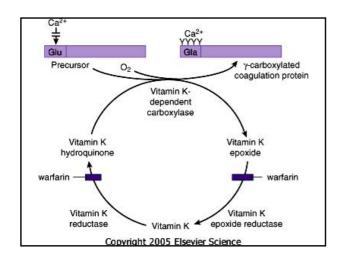

- 1. Pared vascular
- 2. Plaquetas
- 3. Coagulación
- 4. Fibrinolisis

3. COAGULACIÓN PLASMÁTICA

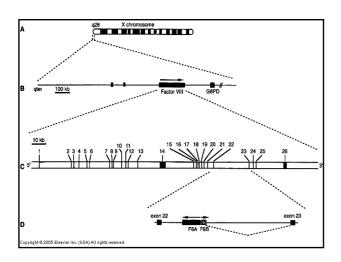

- La activación de la coagulación plasmática se realiza sobre la superficie de las plaquetas previamente activadas.
- La coagulación plasmática es un sistema enzimático quiescente, que solo se pone en marcha con determinados estímulos.

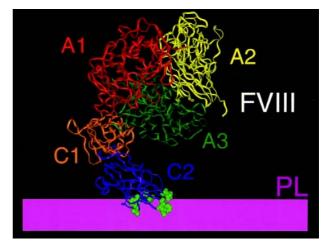

3. COAGULACIÓN PLASMÁTICA FACTORES DE LA COAGULACION

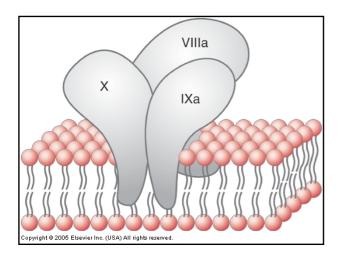
FAC	TOR NOMBRE	FUNCION
1	FIBRINOGENO	SUSTRATO FINAL
II	PROTROMBINA	ACTIVA EL FIBRINOGENO
III	FACTOR TISULAR	ACTIVA EL FACTOR VII
IV M	CALCIO EMBRANA	UNE SERINPROTEASA-
V	PROACELERINA	COFACTOR DEL FACTOR X
VI	NO EXISTE	
VII	PROCONVERTINA	ACTIVA EL FACTOR X
VIII	GLOB. ANTIHEMOFILICA A	COFACTOR DEL IX
IX	GLOB. ANTIHEMOFILICA B	ACTIVA EL FACTOR X
X	FACTOR STUART-PROWER	ACTIVA EL FACTOR II
ΧI	PTA	ACTIVA EL FACTOR IX
XII	FACTOR CONTACTO	ACTIVA EL FACTOR XI
XIII	TRANSAMIDASA	ESTABILIZA LA FIBRINA

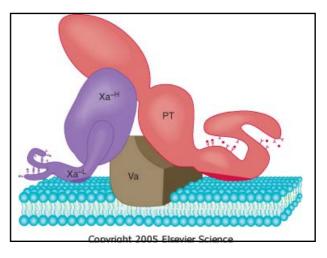

3. COAGULACIÓN PLASMÁTICA PROENZIMAS

- Algunos de los factores de la coagulación son proenzimas, (analogías con tripsina, proceden de un gen ancestral común).
- Sintetizados en el hígado.
- En el extremo carboxiterminal de la molécula se encuentra el centro activo, que posee el aminoacido serina.

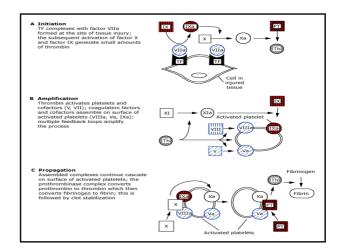

3. COAGULACIÓN PLASMÁTICA FACTORES VITAMINA K DEPENDIENTES

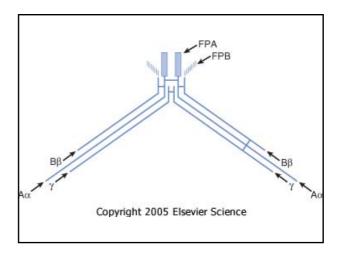

- II, VII,IX y X poseen de 10 a 12 residuos glutámico, son carboxilados por enzima hepática después de su síntesis ribosómica.
- Carboxilación requiere vitamina K.

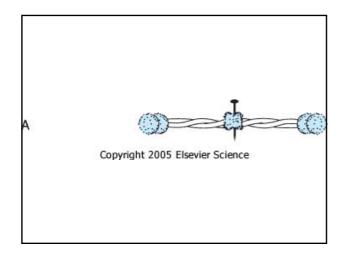


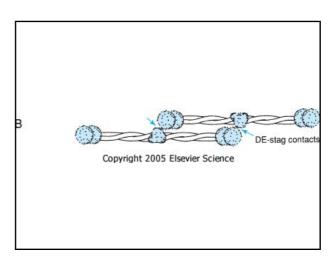

3. COAGULACIÓN PLASMÁTICA COFACTORES V y VIII

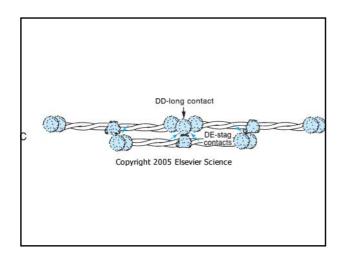
- No son enzimas, pero tanto el factor Xa como el factor lla respectivamente los necesitan.
- Tienen que ser activados por trombina antes de poder unirse a los factores.

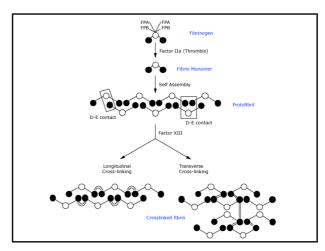


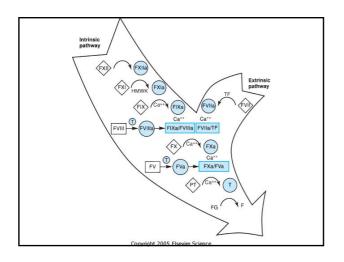

3. COAGULACIÓN PLASMÁTICA OTROS FACTORES

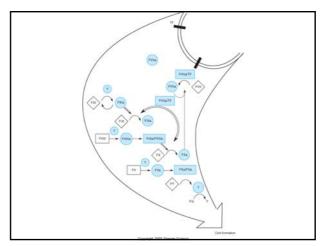

- Existen otros factores de la coagulación cuyo papel "in vivo" está en discusión en la actualidad, XII, kininogeno, y Precalicreina.
- Factor XI, interviene en los primeros pasos de la coagulación, es una proenzima no vitamina K dependiente.




3. COAGULACIÓN PLASMÁTICA FIBRINÓGENO

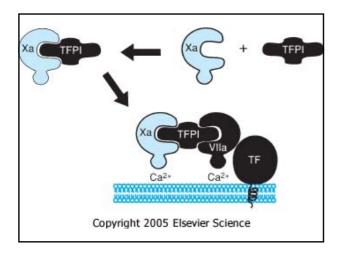

- Molécula compuesta dos cadenas α, dos β y dos γ unidas simetricamente.
- La liberación de fibrinopéptidos A y B deja al descubierto unas regiones que tienen la capacidad de unirse.
- La malla de fibrina es "estabilizada" por una transamidasa llamada factor XIII.





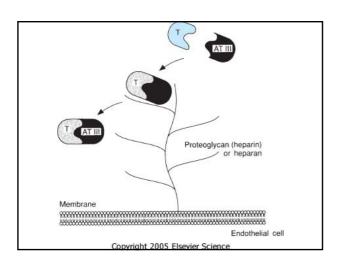
3. COAGULACIÓN PLASMÁTICA. INHIBIDORES

 NOMBRE
 CARACTERISTICA
 INHIBE A:

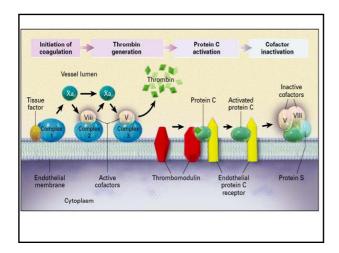

 ANTITROMBINA
 SERPINA
 SERINPROTEASAS

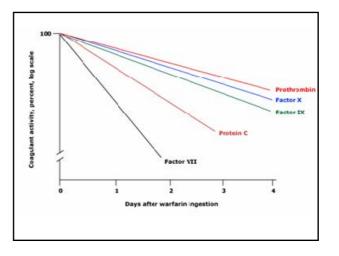
 PROTEINA C
 SERIN PROTEASA
 Va, VIIIa

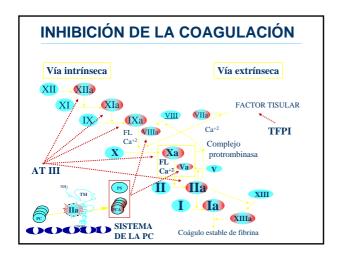
 TFPI
 KUNITZ
 TF/VIIa


3. COAGULACIÓN PLASMÁTICA INHIBIDORES: TFPI

- Una vez formado el complejo factor tisular/VIIa, solo se puede inhibir una vez que haya activado la coagulación.
- La reacción de inhibición requiere la presencia de Xa y de un inhibidor presente en la fracción lipoprotéica del plasma, TFPI.

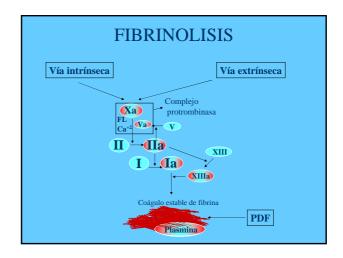

3. COAGULACIÓN PLASMÁTICA INHIBIDORES: AT III


- En superficie de células endoteliales glicosaminoglicanos, heparina, dermatán sulfato, heparán sulfato, que se unen a antitrombina III (AT-III).
- La AT-III, unida a estas sustancias, tiene una gran avidez por los factores activados de la coagulación tipo serín-proteasas.
- La AT- III forma un complejo con trombina que se desprende del endotelio y desaparece en pocos minutos de la circulación, para dejar sitio a una nueva molécula de AT-III.



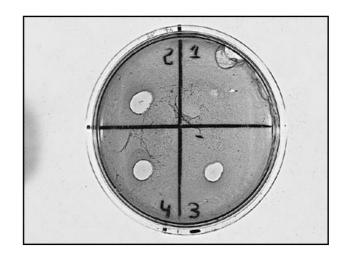
3. COAGULACIÓN PLASMÁTICA INHIBIDORES: COMPLEJO PC

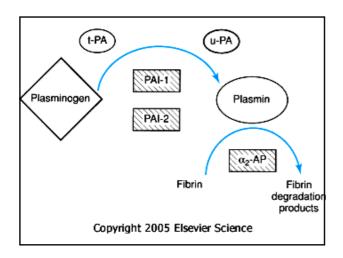
- El proceso de inactivación del factor V es enzimático.
- Unida a la superficie endotelial, se encuentra trombomodulina, a la que se une una serín-proteasa llamada proteína C.
- La trombomodulina se une a trombina, esta activa a la proteína C. La proteína C activada con un cofactor, proteína S, ataca a factor Va y factor VIIIa.

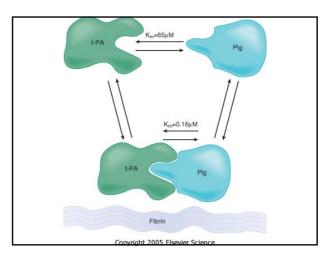


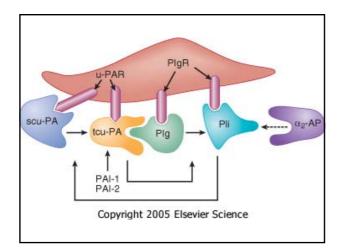
HEMOSTASIA

- 1. Pared vascular
- 2. Plaquetas
- 3. Coagulación
- 4. Fibrinolisis

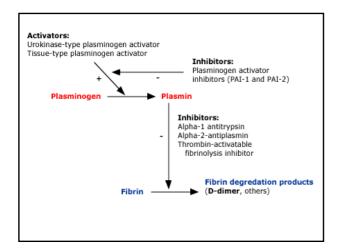

4. FIBRINOLISIS


- La fibrinolisis, constituye un sistema fisiológico fundamental, implicado en el mantenimiento de la integridad del aparato circulatorio.
- A nivel intravascular se activa en respuesta al depósito de fibrina "in vivo" y tiene como finalidad la eliminación de la fibrina.

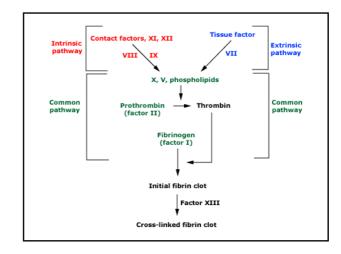



4. FIBRINOLISIS. ACTIVACIÓN

- Cuando se forma la malla de fibrina, activadores del plasminógeno, atacan a plasminógeno, se produce una enzima de doble cadena, la plasmina.
- Va a degradar a la fibrina y a proteínas plasmáticas, produciendo múltiples productos de degradación o PDF.



4. FIBRINOLISIS. INHIBIDORES NOMBRE CARACTERISTICA INHIBE A: α2-ANTIPLASMINA SERPINA PLASMINA PAI-1 SERPINA t-PA, UK PAI-2 SERPINA t-PA, UK


4. FIBRINOLISIS. PRODUCTOS DE DEGRADACIÓN DE FIBRINA

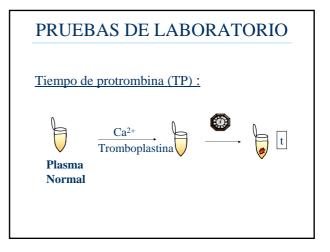
- Durante la trombogénesis se produce una polimerización y estabilización de la fibrina, formándose enlaces covalentes entre cadenas (γ - γ) y (α-α).
- El dímero D contiene dos dominios D procedentes de monómeros de fibrina adyacentes unidos por enlaces γ - γ.

PRUEBAS DE LABORATORIO

Coagulación:

- Tiempo de tromboplastina parcial activada (TTPA)
- * Tiempo de protrombina
- Tiempo de trombina
- Dosificación de factores

PRUEBAS DE LABORATORIO MUESTRA


Tubo con citrato sódico 9:1 Técnica de doble jeringa Mezclar 3-4 veces 4 horas a 4º C

Plasma Normal

PRUEBAS DE LABORATORIO Tiempo de tromboplastina parcial activada (TTPA): FL, Ca²⁺ Plasma Normal FL, Ca²⁺ PCA

